Statistics For The Terrified Advanced level:

The Jelly Baby

Objectives for this session

- Share with you some teaching methods
- Learn from you
- Help some of you learn to make sense of results in systematic reviews
 - the blobbogram
 - "statistical heterogeneity"
 - the difference between fixed effects and random effects models
- funnel plots
- Have fun!

Statistics without numbers

Statistics for the terrified

- Making sense of results
- Measures of effectiveness
- P-values
- The confidence interval
- Bluff your way on the blobbogram

A blobbogram

ber of subjects syn	nptomatic af	ter / days of treatment: ii	ntention to treat ar	ialysis.
Treatment n/N	Control	OR (95%Cl Fixed)	Weight %	ÖR (95%Cl Fixed)
5/43	17/44	← 	16.6	0.21[0.07,0.64
31 / 68	48/77		27.4	0.51[0.26,0.98
9/50	29/50	←■──	26.6	0.16[0.06,0.40
19/35	12/35	+-•	6.1	2.28[0.87,5.97
24 / 86	29/88		23.1	0.79[0.41,1.51
88 / 282	135/294	-	100.0	0.54[0.38,0.76
quare=19.57 df=4 p=0.	0006			
53 p=0.0004				
			6 10	
	Def of subjects sym Treatment nN 5/43 31/68 9/50 19/35 24/66 88/282 quare=19.57 df=4 p=0. 53 p=0.0004	Of of Subjects Symptomatic ar Treatment Control 1 N NI 5/43 17/44 31/86 48/77 3/50 28/50 19/35 12/35 24/66 28/80 28/60 135/284 38/22 135/284 135/284 35/284 38/26 135/294 135/284 135/284	Def of subjects symptomatic after / days of treatment: in Treatment Control \$	Operation Symptomatic after / advs of treatment. Intertion to treat ar Treatment Control OR Weight NI NN (\$5%CLFixed) % 5 / 43 17 / 44

Critical appraisal of **any** study design must consider

- Validity
 - Can the study (results) be trusted?
- Results
 - What are the results and how are they (or can they be) expressed?
- Relevance
 - Do these results apply to the local context?

03 Number of subjects symptomatic after 7 days of treatment: intention to treat analysis. Outcome: Treatment n/N Control n/N Veight % OR (95%Cl Fixed) OR (95%CI Fixed) tudy 02 - Godfrey 03 - Weisman 04 - Mossad 5/43 31/68 9/50 16.6 27.4 26.6 0.21[0.07,0.64] 0.51[0.26,0.98] 0.16[0.06,0.40] 17 / 44 48 / 77 29/50 07 - Douglas 08 - Smith 19/35 12/35 6.1 23.1 2.28(0.87,5.97 24/86 29788 0.79[0.41,1.51] 88 / 282 100.0 0.54[0.38,0.76] tal(95%Cl) 135/294 Test for heterogeneity chi-square=19.57 df=4 p=0.0006 Test for overall effect z=-3.53 p=0.0004

Zinc for colds

Zinc for colds

Study	Treatment n/N	Control n/N		OR (95%Cl Fixed)		Weight %	OR (95%Cl Fixed)
02 - Godfrey	5/43	17/44	←			16.6	0.21[0.07,0.64
03 - Weismann	31 / 68	48/77	-			27.4	0.51[0.26,0.98
04 - Mossad	9/50	29/50	←∎	-		26.6	0.16(0.06,0.40
07 - Douglas	19/35	12/35				6.1	2.28[0.87,5.97
08 - Smith	24 / 86	29/88				23.1	0.79[0.41,1.51
Total(95%Cl)	88 / 282	135/294		+		100.0	0.54[0.38,0.76
Test for heterogeneity chi- Test for overall effect z=-:	square=19.57 df=4 p=0. 3.53 p=0.0004	0006					
			.1 .2	1	ś	10	

Warning!

- Everything I say from now onwards assumes that the results being considered come from an unbiased study.
- It assumes that you have appraised the study and found it to be valid.

It could be due to chance!

- How can we express uncertainty due to chance?
- Null hypothesis
- How often would you get a result like this by chance if there were nothing going on?
- P-value in a nutshell

P-value in a nutshell

Moral:

Any observed difference between two groups, *no matter how small*, can be made to be "statistically significant" - at *any* level of significance - by taking a sufficiently large sample.

- How can we express uncertainty due to chance?
- Answer: the p-value
- But is there a better answer?

Blobbogram for zinc tablets for a cold!

-	108	n/N	(95%CI Fixed)	%	(95%Cl Fixed)
02 - Godfrey	5/43	17/44	← -	16.6	0.21[0.07,0.64]
03 - Weismann	31 / 68	48/77		27.4	0.51[0.26,0.98]
04 - Mossad	9/50	29/50	←∎───	26.6	0.16[0.06,0.40]
07 - Douglas	19/35	12/35		6.1	2.28[0.87,5.97]
08 - Smith	24 / 86	29/88		23.1	0.79(0.41,1.51)
fotel(95%Cl)	88 / 282	135/294	+	100.0	0.54(0.38,0.76)
	-		.1 2 1 5	10	

Why use a systematic review?

"The essence of good data analysis is the effective communication of clinically relevant findings"

Pocock SJ. *Clinical Trials: A Practical Approach*, 1983

ey, no problem!

Combining results

5. If the results of the review have been combined, was it reasonable to do so?

- HINT: Consider whether
 - The results were similar from study to study
 - The results of all the included studies are clearly displayed
 - The reasons for any variations in results are discussed

What do we mean by "heterogeneity"?

- That things are not the same
- "Adding apples and pears"

In what way can studies be heterogeneous?

- Population
- Intervention
- Comparator
- Outcome
- Study design
- Time course
- Statistically

DOM PROFESSION

Looking for heterogeneity

- Common sense
- Clinical sense
- Statistical – Graphical
 - Colculatio
 - Calculation

Statistical heterogeneity

- Are the differences among the results of the studies greater than could be expected by chance?
- One way of doing this is look at blobbogram.

Statistical heterogeneity

- Are the differences among the results of the studies greater than could be expected by chance?
- If the CIs for the results of each study do not overlap, it means that the differences are statistically significant
- i.e. unlikely to be just due to chance there is some underlying real difference

Statistical heterogeneity

- Tests for heterogeneity are formal statistical analyses
- They estimate how often the observed variation between study results would be expected by chance alone.
- The more significant the (the smaller the p-value), the more likely it is that the observed differences were not due to chance alone.

Dutcome: 03 Num	ber of subjects sym Treatment	ptomatic after 7 d Control	ays of treatment: intent OR	ion to treat ar Weight	alysis. or
tudy	n/N	n/N	(95%Cl Fixed)	%	(95%Cl Fixed)
02 - Godfrey	5/43	17/44 ←	•	16.6	0.21[0.07,0.64]
03 - Weismann	31/68	48/77		27.4	0.51[0.26,0.98]
04 - Mossad	9/50	29/50 🔶 🖬		26.6	0.16[0.06,0.40]
07 - Douglas	19/35	12/35		- 6.1	2.28[0.87,5.97]
08 - Smith	24/86	29.(88		23.1	0.79[0.41,1.51]
otal(95%CI)	58 282	435/294	+	100.0	0.54[0.38,0.76]

Combining studies when there is heterogeneity

• What can we do?

Random effects vs fixed effects

Xtudy n.N n.N (\$5% CI Fixed) % (\$5% CI Fixed) (\$5% CI Fixed) (\$5% CI Fixed) % (\$5% CI Fixed) (\$5% CI Fixed)	^o l Fivedì
Study 1 166 / 500 130 / 500 S2.2 1.20 Study 4 44 / 6000 11 / 6020	si meuj
Study 4 44/6000 11/6020	8(1.05,1.5
	1 2,07,7,7
.1 .2 1 5 10	

Random effects vs fixed effects

Outcome: 01 D	eath rate Treatment	Control	RR	Weight	RR
study	D/N	n/N	(95%CI Fixed)	%	(95%CI Fixed)
Study 1	166 / 500	130/500		92.2	1.28[1.05,1.5
Study 4	44 / 6000	11/6020	—	• 7.8	4.01[2.07,7.7
'otal(95%Cl)	210/6500	141 / 6520	•	100.0	1.49[1.24,1.7
est for heterogeneity c	hi-square=11.12 df=1 p=0	.0009			
est for overall effect of	=4.22 p=0.00002				
			1 .2 1	5 10	

Copyright (c) Dr Amanda Burls Director of ThinkWell

Random effects vs fixed effects

tudy	Treatment n/N	Control n/N		RR (95%Cl Random)	Weight %	RR (95%Cl Randor
Study 1	166 / 500	130/500			53.8	1.28[1.05,1.55
Study 4	44 / 6000	11 / 6020			- 46.2	4.01[2.07,7.76
otal(95%Cl)	210 / 6500	141/6520			100.0	2.17[0.69,6.80
est for heterogeneity o	hi-square=11.12 df=1 p=0	.0009				
est for overall effect of	=1.33 p=0.18					
			.1 .2	1 5	10	

Random effects vs fixed effects

Study	Treatment n/N	Control n/N		RR (95%Cl Fixed)		Weight %	RR (95%Cl Fixed)
Study 1	166 / 500	130/500				92.2	1.28[1.05,1.55
Study 4	44 / 6000	11/6020			•	7.8	4.01[2.07,7.76
Total(95%CI)	210/6500	141/6520		•		100.0	1.49[1.24,1.79
lest for overall effect 2	=4.22 p=0.00002		.1 .2	1	ś	10	
Total(95%CI) Test for heterogeneity c Test for overall effect iz	210 / 6500 hi-square=11.12 df=1 p=0 =1.33 p=0.18	141 / 6520 .0009			 -	100.0	2.17[0.69,6.80

Random or fixed effects – Which is right?

"Using a random effects model substitutes the unrealistic assumption of the fixed effects model with another equally unrealistic assumption"

Zinc for colds - fixed effects

Study	Treatment n/N	Control n/N	OR (95%Cl Fixed)	Weight %	OR (95%Cl Fixed)
02 - Godfrey	5/43	17/44	→	16.6	0.21[0.07,0.64
03 - Weismann	31/68	48 / 77		27.4	0.51[0.26,0.98
04 - Mossad	9/50	29/50	← ■ ──	26.6	0.16[0.06,0.40
07 - Douglas	19/35	12/35		- 6.1	2.28[0.87,5.97
08 - Smith	24 / 86	29/88		23.1	0.79[0.41,1.51]
otal(95%Cl)	88 / 282	135 / 294	+	100.0	0.54[0.38,0.76
est for heterogeneity chi-s	quare=19.57 df=4 p=0.	0006			
est for overall effect z=-3	.53 p=0.0004				
			.1 .2 . 1	5 1D	

Zinc for colds – random effects

tuda	Treatment	Control	OR (95%CL Random)	Weight	OR (95%CI Random)
lady	164	184	(35 ACT Kandom)	70	(ssachandom)
02 - Godfrey	5/43	17/44		17.5	0.21[0.07,0.64]
03 - Weismann	31/68	48 / 77		22.0	0.51[0.26,0.98]
04 - Mossad	9/50	29 / 50		19.5	0.16[0.06,0.40]
07 - Douglas	19/35	12/35		19.0	2.28[0.87,5.97]
08 - Smith	24 / 86	29/88		22.1	0.79[0.41,1.51]
otal(95%Cl)	88/282	135/294	-	100.0	0.51[0.22,1.15]
est for heterogeneity chi-s	quare=19.57 df=4 p=0	.0006			
est for overall effect z=-1	.62 p=0.11				
		ů.	1 .1 10	100	

Zinc for colds - random effects

Study	Treatment n/N	Control n/N	OR (95%Cl Random)	Weight %	ÓR (95%Cl Random)
02 - Gadfrey	5/43	17/44		17.5	0.21[0.07,0.64]
03 - Weismann	31 / 68	48 / 77		22.0	0.51[0.26,0.98]
04 - Mossad	9/50	29/50		19.5	0.16[0.06,0.40]
07 - Douglas	19/35	12/35		19.0	2.28[0.87,5.97]
08 - Smith	24/86	29/88		22.1	0.79[0.41,1.51]
otal(95%Cl)	88/282	135/294	-	100.0	0.51[0.22,1.15]
est for heterogeneity chi-s	quare=19.57 df=4 p=0	.0006			
est for overall effect z=-1	.62 p=0.11				
			.1 10	100	

Sources of asymmetry

- Publication bias
- Poor methodological quality of smaller studies
- Poor methodological design
- True heterogeneity i.e. Size of effect differs according to study size
 - for example, due to differences in the intensity of interventions or differences in underlying risk between studies of different sizes
- Chance

Making sense of the data

A number of explanations for heterogeneity have been proposed:

- patients different types of patients included in the trials
- Crossover different rates of crossover to taxanes on the control arms
- research arms research arms differ in effectiveness
- control arms control arms differ in effectiveness

Crossover before progression

Crossover on progression

Paclitaxel schedule

Survival

 Pacilitaxel /platinum
 Platinum

 3 hour infusion of pacilitaxel

 0V10
 183/342
 220/338

 ICON3
 345/710
 674/1364

 χ^2 net = 5.14 (1df) p = 0.023

 24 hour infusion of pacifixel

 GOG111
 98/184
 137/202

 GOG-132
 154/201
 158/200

 y²net = 7.93 (1df)
 p = 0.0054

Differences in control arms

Overall survival

 Pacilitaxel /platinum
 Platinum

 cyclophosphamide/cisplatin
 GOG111
 98/184
 137/202

 OV10
 183/342
 220/338
 2///388

 χhet = 1.17 (1df)
 p = 0.28
 2///
 2////

 single agent platinum or CAP

 GO@ 32
 154/201
 158/200

 ICON3 carbo
 230/478
 472/943

 ICON3 (CAP)
 115/232
 202/421

 Žhet
 0.33 (2df)
 p
 0.85

