Exposing the P value fallacy to young residents

Piersante Sestini and Stefania Rossi

School of Medicine, University of Siena

5th International Conference of Evidence-Based Health Care Teachers & Developers Taormina, October 29, 2009

→ □ → → □ → → □ →

- The fallacy underlying the widespread use of the P value as a tool for inference in critical appraisal is well known, still little is done in the education system to correct it
 - Goodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med. 1999;130:995-1004.
 - Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45:135-40
- We used a questionnaire to ask 16 residents in respiratory diseases (age range 26-38 yrs, average 30) about their use and knowledge of the P value.
- We devised a simple intervention to improve understanding of the p value and to promote the use of the Bayes Factor
 - Goodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med. 1999;130:1005-13

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

- The fallacy underlying the widespread use of the P value as a tool for inference in critical appraisal is well known, still little is done in the education system to correct it
 - Goodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med. 1999;130:995-1004.
 - Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45:135-40
- We used a questionnaire to ask 16 residents in respiratory diseases (age range 26-38 yrs, average 30) about their use and knowledge of the P value.
- We devised a simple intervention to improve understanding of the p value and to promote the use of the Bayes Factor
 - Goodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med. 1999;130:1005-13

- The fallacy underlying the widespread use of the P value as a tool for inference in critical appraisal is well known, still little is done in the education system to correct it
 - Goodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med. 1999;130:995-1004.
 - Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45:135-40
- We used a questionnaire to ask 16 residents in respiratory diseases (age range 26-38 yrs, average 30) about their use and knowledge of the P value.
- We devised a simple intervention to improve understanding of the p value and to promote the use of the Bayes Factor
 - Goodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med. 1999;130:1005-13

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

- The fallacy underlying the widespread use of the P value as a tool for inference in critical appraisal is well known, still little is done in the education system to correct it
 - Goodman SN. Toward evidence-based medical statistics. 1: The P value fallacy. Ann Intern Med. 1999;130:995-1004.
 - Goodman S. A dirty dozen: twelve p-value misconceptions. Semin Hematol. 2008;45:135-40
- We used a questionnaire to ask 16 residents in respiratory diseases (age range 26-38 yrs, average 30) about their use and knowledge of the P value.
- We devised a simple intervention to improve understanding of the p value and to promote the use of the Bayes Factor
 - Goodman SN. Toward evidence-based medical statistics. 2: The Bayes factor. Ann Intern Med. 1999;130:1005-13

э

Do you know enough about the P value?	93%
Average patients per day	8 ± 1
Average articles read per week	4 ± 1
Do you see the P as the main parameter of a result?	75%
Average drug reps contacts per week	$3.2\pm.3$
Do the drug reps present sponsored research?	100%
Do the reps present the P value as the main result?	93%

< □ > < @ > < 注 > < 注 > ... 注

Multiple answers accepted

- If there is no difference, the probability of getting this or a more extreme result is 5%
- 2 The probability that there is no difference is 5%
- O The probability that the groups are different is 95%
- The minimum difference between the groups is 5%
- If repeating the experiment, the probability of obtaining again the same result is 5%
- I have no idea

Multiple answers accepted

- If there is no difference, the probability of getting this or a more extreme result is 5%
- 2 The probability that there is no difference is 5%
- O The probability that the groups are different is 95%
- \bigcirc The minimum difference between the groups is 5%
- If repeating the experiment, the probability of obtaining again the same result is 5%
- I have no idea

Definition of the P value

The probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming that the null hypothesis is true.

Piersante Sestini and Stefania Rossi Exposing the P value fallacy to young residents

Possible answers

The probability if there is no difference is 5%2The probability that there is no difference is 5%7The probability that there is a difference is 95%11The minimum difference is 5%1The probability of obtaining again this result is 5%2I have no idea2

• Imagine that you came home, and the light is on.

- You want to guess whether someone is in when the light is on
- A P of 0.05 is like knowing that when nobody is in (the null hypothesis), the light is on only 5% of the times
- Does this mean that there is a 95% probability that somebody is in?

- Imagine that you came home, and the light is on.
- You want to guess whether someone is in when the light is on
- A P of 0.05 is like knowing that when nobody is in (the null hypothesis), the light is on only 5% of the times
- Does this mean that there is a 95% probability that somebody is in?

- Imagine that you came home, and the light is on.
- You want to guess whether someone is in when the light is on
- A P of 0.05 is like knowing that when nobody is in (the null hypothesis), the light is on only 5% of the times

 Does this mean that there is a 95% probability that somebody is in?

・ロ・ ・雪・ ・ヨ・ ・ヨ・

- Imagine that you came home, and the light is on.
- You want to guess whether someone is in when the light is on
- A P of 0.05 is like knowing that when nobody is in (the null hypothesis), the light is on only 5% of the times
- Does this mean that there is a 95% probability that somebody is in?

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

	No	Yes	
Off	95	?	
On	5	?	?/(5+?)
$P \rightarrow$	5%		but you want this↑

- The P is the probability of finding the light on when nobody's in (L|P)
- But you want the probability that nobody is in when the light is on (P|L)

E

・ロト ・四ト ・ヨト ・ヨト

	No	Yes	
Off	95	?	
On	5	?	?/(5+?)
$P \rightarrow$	5%		but you want this↑

 $\bullet\,$ The P is the probability of finding the light on when nobody's in (L|P)

 But you want the probability that nobody is in when the light is on (P|L)

臣

・ロト ・四ト ・ヨト ・ヨト

	No	Yes	
Off	95	?	
On	5	?	?/(5+?)
$P \rightarrow$	5%		but you want this↑

- $\bullet\,$ The P is the probability of finding the light on when nobody's in (L|P)
- $\bullet\,$ But you want the probability that nobody is in when the light is on (P|L)

Э

Bayes Factor (Likelihood ratio)

Minimum BF= %TP/%FP =
$$e^{Z^2/2} = e^{1.96^2/2} = 6.8$$

Is somebody in?

	No	Yes	
Off	95	100 - 32 = 68	
On	5	5 * 6.8 = 32	32/37 = 86%
	100	100	
$P \to$	5%	32%	

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ・ ・

	No	Yes	
Off	95	20	
On	5	80	80/85= 94%
	100	100	
P ->	5%	80%	

 In many experiments, the statistical power is selected to have a false negative rate (β) of 20% and a false positive rate (α) of 5% (under certain assumptions *a priori*)

(ロ) (四) (三) (三)

	No	Yes	
Off	95	20	
On	5	80	80/85= 94%
	100	100	
P ->	5%	80%	

• In many experiments, the statistical power is selected to have a false negative rate (β) of 20% and a false positive rate (α) of 5% (under certain assumptions *a priori*)

(日) (周) (日) (日)

	No	Yes	
Off	95	2	
On	5	8	8/13= 62%
	100	10	
P ->	5%	80%	

• α and β errors alone do not adjiust for low pre-test probabilities

æ

Piersante Sestini and Stefania Rossi Exposing the P value fallacy to young residents

・ロン ・四と ・ヨン ・ヨン

	No	Yes	
Off	95	2	
On	5	8	8/13= 62%
	100	10	
P ->	5%	80%	

 $\bullet~\alpha$ and β errors alone do not adjiust for low pre-test probabilities

E

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ →

- Many got confused by the abstraction
- In retrospect, a diagnosic example could have been better (e.g. nausea and pregnancy)
- After the course all except two identified the meaning of the P value
- All except one declared that in the future they would use the Bayes Factor instead.
- After 3 months, no one has ever done it

・ロン ・四と ・ヨン ・ヨン

- Many got confused by the abstraction
- In retrospect, a diagnosic example could have been better (e.g. nausea and pregnancy)
- After the course all except two identified the meaning of the P value
- All except one declared that in the future they would use the Bayes Factor instead.
- After 3 months, no one has ever done it

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Many got confused by the abstraction
- In retrospect, a diagnosic example could have been better (e.g. nausea and pregnancy)
- After the course all except two identified the meaning of the P value
- All except one declared that in the future they would use the Bayes Factor instead.
- After 3 months, no one has ever done it

・ロン ・四と ・ヨン ・ヨン

- Many got confused by the abstraction
- In retrospect, a diagnosic example could have been better (e.g. nausea and pregnancy)
- After the course all except two identified the meaning of the P value
- All except one declared that in the future they would use the Bayes Factor instead.
- After 3 months, no one has ever done it

- Many got confused by the abstraction
- In retrospect, a diagnosic example could have been better (e.g. nausea and pregnancy)
- After the course all except two identified the meaning of the P value
- All except one declared that in the future they would use the Bayes Factor instead.
- After 3 months, no one has ever done it

(日) (周) (日) (日)

- The P value is frequently used by drug reps to promote the results of drug trials and by young residents for interpreting them.
- A simple, short intervention in a group with poor understanding of the P value is able to dramatically improve knowledge.
- However, such interventions are unlikely to have a significant impact, unless major changes occur in the medical community

- The P value is frequently used by drug reps to promote the results of drug trials and by young residents for interpreting them.
- A simple, short intervention in a group with poor understanding of the P value is able to dramatically improve knowledge.
- However, such interventions are unlikely to have a significant impact, unless major changes occur in the medical community

- The P value is frequently used by drug reps to promote the results of drug trials and by young residents for interpreting them.
- A simple, short intervention in a group with poor understanding of the P value is able to dramatically improve knowledge.
- However, such interventions are unlikely to have a significant impact, unless major changes occur in the medical community

- 4 同 ト 4 ヨ ト 4 ヨ ト