A new instrument for assessing the credibility of effect modifiers

Stefan Schandelmaier, Matthias Briel, Xin Sun, Yaping Chang, Behnam Sadeghirad, Wojtek Wiercioch, Tahira Devji, Romina Brignardello, Farid Foroutan, Gordon Guyatt

McMaster University

PLATO trial

N Engl J Med. 2009 AstraZeneca Ticagrelor versus Clopidogrel >18000 Patients with acute coronary syndrome Cardiovascular events: HR 0.84 (0.77 to 0.92)

Low risk of bias Interaction test P=0.045 No a priori hypothesis 33 subgroup analysis (3 P≤0.05)

<1980	Rothman, Greenland, Walter, et al.	Concept of effect modification
1987	Pocock et al.	Statistical problems
1991	Yusuf et al.	Criteria for critical appraisal
1992	Guyatt, Oxman	Criteria for critical appraisal
2002	Higgins, Thompson	Limitations of meta-regression
2005	Rothman et al.	Series in Lancet
2010	Kent, Rothwell, Ioannidis, Altman, et al.	Framework reporting and analysis
2010	Sun et al.	More criteria
2011	Guyatt, Oxman, Schünemann et al.	GRADE guidance subgroup analysis
2014	Koch, Keene, Wang et al.	Series in J Biopharm Stat
2015	VanderWeele et al.	Causal interaction
2015	Burke et al.	Bayesian credibility assessment
2016	Wallach et al.	Empirical evidence of spurious findings

What's new?

Formal instrument

Items, response options, overall RCTs and MAs Compatible with GRADE

Systematic survey of credibility criteria

Expert consensus

User testing, reliability study

1730 journal articles + 56 text book chapters

150 reviewed in detail

55 articles reporting 35 candidate items

- Chance
- Bias
- Rationale

Chance (random error)

Replication across studies	13 (of 55)
Significant interaction test	15
Small number of subgroup analyses	17
Pre-specified analytic details	15
Adjustment for multiplicity	8
Reporting of all analysis	6

Rationale

Rationale preceded analysis	15
Specified direction	15
Expert input	4
Indirect evidence	4
Causal factor not proxy	6

Effect modification is scale-dependent

Scale of interest:

Strengths and limitations

Systematic survey
Expert consensus
Reliability
Validity

✓ Presence
Absence
() Relevance

Bottom line

- Credibility of subgroup analyses has taken up a lot of intellectual energy
- No single criterion will be sufficient to establish credibility
- Formal instrument for overall credibility