Network Analysis of Information Needs to Identify Safe and Effective prescriptions for an Individual.

Martin Dawes, Roland Grad, Pierre Pluye

University of British Columbia & McGill University

COI: Martin Dawes receives funds from GenXys, a UBC spin-out company.
The Problem(s)

- 53% of adults have MM2+
- 33% of adults have MM3+
- If you are treating someone with diabetes, depression, and arthritis it is hard to follow the EB guidelines

- 13% of patients have “high risk” prescriptions even with ”good” electronic medical records
 - 10% if taking 2-4 drugs
 - 80% if taking > 14 drugs

- Adverse Drug Events
 - Within 4 weeks of receiving a primary care prescription, 25% of patients experience an adverse drug event
 - Up to 70% of ADRs leading to ED visits are preventable
Aim: Using Network Analysis explore the potential interactions for a hypothetical patient

- Hypothetical comorbid MM5 patient
 - Osteoarthritis (12 drug options)
 - Depression (12 drug options)
 - Hypertension (34 drug options)
 - Diabetes (18 drug options)
 - Hyperlipidemia (4 drug options)

Total of 80 drugs used commonly in primary care available for this patient – no combinations included

- Liver & Renal
- Total of 82 nodes of a network
- That is 3,321 combinations to check for interactions (N*(N-1)/2)
Identify actual potential drug-drug, drug-liver, drug-renal interactions

• Drug Drug Interactions identified using a drug-drug interaction database (Lexicomp)
• Renal interactions identified using a renal drug interaction database and North American product monographs
• Liver Function interactions checked using North American product monographs
• Results: 1,113 described potential interactions
Results:
Types of Interaction

• Interactions were identified as
 • No Action Needed (n=189),
 • Monitor Therapy (n=777),
 • Consider therapy modification (n=144),
 • Avoid combination (n=3).
 • *No Action Needed example: Benazepril and Canagliflozin -SGLT2 inhibitor*
 • Canagliflozin may enhance the hyperkalemic effect of Angiotensin II Receptor Blockers. Canagliflozin may enhance the hypotensive effect of Angiotensin II Receptor

• The mean number of drug-drug, drug-liver, and drug-renal interactions was 27.1 (Range 1 to 56).
• The frequency of interactions was not normally distributed
• Renal dosing information was identified for 50 drugs,
• Liver dosing information was identified for 46 of the drugs.
Renal cocoon of a Cyna moth pupa

non-steroidal anti-inflammatory drugs, diuretics, morphine and duloxetine, were the drugs with most interactions.
Force Atlas Analysis
Weighting appears to highlight diuretics

<table>
<thead>
<tr>
<th>Drug Interaction</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>B: No action needed</td>
<td>0</td>
</tr>
<tr>
<td>C: Monitor therapy</td>
<td>1</td>
</tr>
<tr>
<td>D: Consider therapy modification</td>
<td>2</td>
</tr>
<tr>
<td>X: Avoid combination</td>
<td>3</td>
</tr>
<tr>
<td>Liver Dosing</td>
<td>2</td>
</tr>
<tr>
<td>Renal Dosing</td>
<td>2</td>
</tr>
</tbody>
</table>
Clustering Coefficient
0.243

- Size and colors of nodes is clustering coefficient
- Clear groupings of drugs by mechanism of action, and interaction
Network Analysis

- Takes highly complex data sets
 Combine all these features into one picture
- Clear groupings of drugs
Summary

• Findings
 • There are clearly identified groups of drugs that are potentially more harmful than others (Diuretics, NSAIDs, Hypoglycemics)
 • The size these effects and their relationships can be identified and described using network analysis

• Limitations
 • Only commonly used drugs in primary are included
 • Only Drug-Drug, Liver and Renal interactions included
 • Only Lexicomp used
 • Does not take into account what the patient may be taking already – that reduces the network

• Next Steps
 • Start adding more information from the examples above
 • Explore whether and how guidelines/protocols can manage MM2+ to MM5+
 • Can Network Analysis help clinicians manage prescribing for patients with MM
Conclusions for EBHC guidance about medications

• For a patient with multimorbidity the complexity and volume of potential interactions identified using Network Analysis approach is staggering

• Class effects are significant but not universal

• Rational Prescribing approaches such as Deprescribing systems and Choosing Wisely need to take into account MM, perhaps using Network Analysis.

• “can I just click on the disease for my patient and see the Network Analysis?”

 martin.dawes@ubc.ca
Medication Decision Support

Medication Options

Psychotherapy and anti-anxiety medication

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Class</th>
<th>Initial Dose</th>
<th>Titrating</th>
<th>Usual Dose</th>
<th>Maximum Dose</th>
<th>Dose adjusted for renal function</th>
<th>Brands</th>
<th>Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escitalopram</td>
<td>Antidepressant, SSRI</td>
<td>10 mg PO once daily</td>
<td>Increase daily dose by 10 mg every 1-2 weeks as needed and tolerated</td>
<td>20-40 mg PO once daily</td>
<td>40 mg PO per day</td>
<td></td>
<td>Paxil, generics</td>
<td>Acetylsalicylic acid</td>
</tr>
<tr>
<td>Paroxetine</td>
<td>Antidepressant, SSRI, CYP2C19 Inhibitor</td>
<td>10 mg PO once daily</td>
<td>Increase daily dose by 10 mg every 1-2 weeks as needed and tolerated</td>
<td>20-40 mg PO once daily</td>
<td>40 mg PO per day</td>
<td></td>
<td></td>
<td>Acetylsalicylic acid</td>
</tr>
<tr>
<td>Sertraline</td>
<td>Antidepressant, SSRI, CYP2C19 Inhibitor</td>
<td>50 mg PO once daily</td>
<td>Increase daily dose by 25 mg at 1 week intervals as needed and tolerated</td>
<td>50-150 mg PO once daily</td>
<td>200 mg PO per day</td>
<td></td>
<td>Zoloft, generics</td>
<td>Acetylsalicylic acid</td>
</tr>
</tbody>
</table>

Sertraline may increase the antiplatelet activities of Acetylsalicylic acid.

Duloxetine is not included as an option due to contraindications, drug interactions or previous trial.

Venlafaxine is not included as an option due to contraindications, drug interactions or previous trial.

Additional Features

- **Management of Drug-Drug Interactions**
- **Drug-Gene Interactions**
- **Specific Dosing** (initial, titration, maximum, target)
- **Dose Adjustment for Renal & Hepatic Impairment**
- **Price Comparison**
- **Brand Names**
- **Drug-Drug Interactions**
- **Excluded Medications**